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consid6ration que ses seuls sous-groupes invariants 
et les RIP qui leur sont associ6es. 

Exemple 

La Fig. 4 donne le treillis modulaire  des sous- 
groupes invariants du groupe G = 4 2 m ;  il est 
isomorphe du treillis modula i re  des RIP associ6es 
ces sous-groupes invariants. 

V. Remarques finales 

Les propri6t6s des RIP ont 6t6 illustr6es dans le 
pr6sent m6moire sur les exemples des groupes ponc- 
tuels 42m, 23 et 4 / m  qui sont de complexit6 moyenne.  
Nous tenons 5. la disposit ion du lecteur des tables 
concernant  les 32 groupes ponctuels cristal- 
lographiques,  les 58 groupes ponctuels bicolores vrais 
(cristallographiques),  les 32 groupes ponctuels 
bicolores gris (cristal lographiques) (Belguith & Bil- 
liet, 1989) et des groupes ponctuels non cristal- 
lographiques (Masmoudi  & Billiet, 1988). 

Un domaine  d 'appl ica t ion des RIP est l 'dtude des 
reprdsentations sous-tendues par les vecteurs de 
liaison des mol6cules 5. atome central. C'est le cas, 
par exemple,  de la mol6cule PCIs b ipyramidale  ~ base 
tr iangulaire dans l'6tat vapeur qui est caract6risde par 
le groupe ponctuel 6m2. En voici les positions [nota- 
tions d6riv6es directement de celles du groupe 
d 'espace P6m2 - N ° 187 (International Tables for  
Crystallography, 1987)]: 

CI 3 j mm2 x , £ , 0 ; x ,  2x, 0 ;2 f ,  g, 0. 

CI 2 g 3m. 0,0,  z;0,0,~?; 

P 1 a 6m2 0 ,0 ,0 .  

Les cinq liaisons P-CI sous-tendent la repr6sentation 
de permutat ion F = 2A'~ + A " +  E'  du groupe 6m2. F 

est la somme de deux RIP de ce groupe: R ( 3 m ) =  
A'~+A~ sous-tendue par les deux liaisons axiales 
[2,11 ~ ;  cf. Durrant  & Durrant  (1972)] et R ( m m 2 ) =  
A'~ + E'  sous-tendue par les trois liaisons dquatoriales 
[2,04 A; cf. Durrant  & Durrant  (1972)]. 

Les RIP d 'un  groupe sont un cas particulier d 'une  
cat6gorie plus vaste de repr6sentations induites dites 
'monomiales ' ,  c'est-/t-dire, induites par les repr6- 
sentations monodimens ionne l les  des sous-groupes 
(Gorenstein,  1968). Des repr6sentations monomia les  
plus complexes que les RIP apparaissent  lorsqu 'on 
6tudie par exemple les repr6sentations sous-tendues 
par des vecteurs 6quivalents joignant  des positions 
prises dans deux families de positions 6quivalentes 
d 'un  groupe ponctuel (moi6cule fi l iaisons non cen- 
trales) (Masmoudi  & Billiet, 1989). 
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Abstract 

A method of  bounding  a protein molecule in a very 
noisy synthesis is considered. It consists of  two steps. 
In the first step ( 'nonl inear  filtration') basic points 

are chosen that are most likely to belong to the region 
of the molecule. In the second step ( ' l inear filtration') 
a compact  region with the maximal  concentrat ion of 
these points is searched. Various modifications of the 
method are analysed. It is shown that the molecular  
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region in a finite-resolution synthesis contains not 
only the highest positive maxima of the density distri- 
bution but also the deepest negative minima. 

I. Introduction 

In the early stages of an X-ray study a situation may 
arise when an electron density synthesis produced is 
so noisy that it hardly even allows identification of 
the contour and the location of the protein molecule. 
In this paper mathematical techniques are shown 
which may be used to bound the molecule in such a 
noisy synthesis. The information obtained may 
further serve to refine structure-factor phases 
(Bricogne, 1976; Wang, 1985). The method we use is 
based on two assumptions: 

(i) The electron density synthesis is an accurate 
representation of the protein molecule (a 'signal') 
with a superposed random noise. It is also assumed 
that the noise is not so large as to suppress the signal 
completely but may be enough to complicate visual 
identification of the molecule (Fig. lb). 

(ii) The protein molecule is a globule, i.e. it 
occupies a compact region in the crystal cell, sur- 
rounded by a solvent with the electron density much 
lower than in the protein. 

The method consists of two steps utilizing assump- 
tions (i) and (ii), respectively (Urzhumtsev, 1985). In 
the first step we choose 'basic points' in the unit cell; 
these are points which with certainty can be ascribed 
to the region of the molecule which is searched. Here 
the simplest way is to take points with relatively high 
values of electron density p ~ ' f l c r i t ,  exceeding the 
value of noise. This step is examined more thoroughly 
in §2. 

In the second step we try to bound a compact region 
in a cell in which the concentration of basic points 
is maximal. We consecutively examine all the points 
r in the cell and calculate the number b(r) of the 
basic points which fall in a sphere of radius R with 
r as the centre. The largest number of these points 
corresponds to the centre of the sphere locating inside 
the boundary of the molecule, and the least to the 
sphere locating inside the solvent region. A more 
detailed description of this step and of its effective 
computer implementation is given in § 3. It should 
be noted that the concentration function b(r) should 
not be considered as ' improved'  synthesis. The only 
aim of the b(r) calculation is to produce the "mask' 
of the molecular region. 

Fig. l(c) shows the result of application of our 
method to the synthesis of Fig. l(b).  The formal 
procedure is as follows. 

{01 f°rp(r)<pc~it  (1) 
Pro(r) = for p(r) --> Pcrit" 

b(r) = C [ p"(u)  dV.. (2) 
Ir-ul~ R 

A close approach to bounding a molecule has been 
proposed by Wang (1985). It also breaks into two 
essential steps. The first is the transform of the initial 
synthesis, 

~0 for p(r) <- Fooo/V pro(r) ( p(r) - Fooo/V for p(r) > Fooo/V. 
(3) 

(In practice this transform is done by calculating the 
synthesis without Foo0 and zeroing it at the points 
with negative values.) In the second step, for every 
point r in the unit cell the weighted mean of the 
modified electron density is calculated in a sphere of 
radius R with r as the centre: 

bW(r)=C ~ ( R -  Ir-ul)pm(u) d V,,. (4) 
Ir-ul~ R 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 1. Section z=12/48. Contours p(r)=p~, ' (i=1,2) are pre- 
sented where pO for each of the syntheses are chosen so that the 
points with p(r) -> pC? ( i = 1,2) occupy 40 and 10% of the volume 
of the unit cell. (a) Synthesis pex(r) constructed over the full 
4 A set of exact structure factors; (b) synthesis p,(r) with 18% 
of reflections excluded from pea(r); (c) synthesis p,,(r) after the 
treatment (1)-(2) (Petit =0.40e/~-3, R = 10 *); (d) synthesis 
p,(r) after the treatment (3)-(4) (R = 10 ,~); (e) synthesis p,,(r) 
averaged by (2) (R = 10/~); (f) synthesis p,(r) averaged with 
the weight (4) (R = 10/~). 
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Fig. l (d)  shows the result of application of Wang's 
(1985) method to the synthesis of Fig. l(b). 

More detailed comparison of the methods (1)-(2) 
and (3)-(4) is made at the end of the paper. 

2. Nonlinear filtration 

2.1. Necessity of nonlinear filtration 

Before we discuss in detail the first step of the 
synthesis treatment, we want to show that generally 
this step cannot be neglected, otherwise the trans- 
forms (2) or (4) applied directly to the initial synthesis 
will not allow bounding of the molecule of interest 
(Figs. 1 e, f ) .  

The test object was a subtilisin model placed into 
a 73-0 × 64.0 × 48 ~ unit cell in space group P2~2~2t. 
The centre of the molecule was chosen so that 
different symmetry-bound molecules did not overlap. 
The atomic coordinates were used to calculate struc- 
ture factors Fex(S)exp [iq~ex(S)], and an 'exact' syn- 
thesis Pex(r) with a resolution of 4 A was obtained. 
This synthesis was used for the checking of results 
only. One of its sections is shown in Fig. l (a) .  

In general, the synthesis is noisy if (i) it is calculated 
from erroneous structure factor phases; and (ii) the 
calculation does not include the terms corresponding 
to structure factors for which either modules are not 
found experimentally or phases are lacking. 

To simulate a noisy synthesis, we excluded 18% 
of terms from the calculation of the exact synthesis 
p~x(r) and took absolutely accurate phases for the 
remaining reflections. A section of the synthesis p,(r) 
obtained is shown in Fig. l(b). Let us stress that all 
the deformations in the synthesis of Fig. l(b) are the 
result of merely excluding some reflections. The 
phases of those retained were quite correct. Mainly 
excluded were reflections in the central area around 
the axis 1. These are reflections which on technical 
grounds are lost in a real X-ray experiment. 

Figs. l(e) and ( f )  illustrate the syntheses pn(r) 
averaged either directly by (2) or with Wang's weight 
function by (4). As one can see, here the compact 
region is not bounded, in contrast with Figs. l(c) and 
(d) which show the result of an averaging after the 
nonlinear modifications (1) or (3) have been applied. 

2.2. Nonlinear modification of electron density 

There is an extensive literature on the 'modification 
of electron density' used to improve the quality of 
syntheses (e.g. Qurashi, 1953; Hoppe & Gassmann, 
1968; Zwick, Bantz & Hughes, 1976; Simonov, 1976; 
Vainshtein & Khachaturyan, 1977; Schevitz, 
Podjarny, Zwick, Hughes & Sigler, 1981; Cannillo, 
Oberti & Ungaretti, 1983). These authors suggested 
different approaches to substantiating the 
modifications they employed. In this section we con- 

sider the modification directing the search for basic 
points. 

Two ways of introducing these points to bound a 
molecule are possible. First, one may unambiguously 
decide whether a point belongs to the region of the 
molecule or not. This means the modified function 
pro(r) will take one of two discrete values (0 or 1). 
The simplest example of such a modification is the 
transform (1). The other way is to introduce for every 
point in the unit cell a weight which could serve as 
a measure of our certainty that this point belongs to 
the region of the molecule. Here a good example is 
the calculation of the probability for every point that 
this point belongs to the chosen molecule 
(Urzhumtsev, Lunin & Luzyanina, 1986). 

The simplest way of deciding whether every point 
r belongs to a molecule or not is to compare the value 
of electron density at this point with a threshold flcrit, 
i.e. perform the transform (1). Here it is clear that if 
Pcrit is lower than the noise, then the basic points may 
include a considerable number of points which do 
not belong to the molecule, thereby preventing the 
molecule from being bounded properly. Fig. 2 shows 
the synthesis p,(r) after the transforms (1)-(2) with 
various threshold values of peril. It can be seen that 
for a sufficiently high threshold the molecule can be 
bounded (Fig. 2a), and for a lower level the picture 
is destroyed (Figs. 2b, c). A non-trivial situation arises 
when the threshold decreases further (Fig. 2d). The 
concentration of basic points becomes maximal in 
the solvent, angt minimal in the molecule. Below we 
shall explain this phenomenon. 

(a) (b) 

(c) (d) 

Fig. 2. Synthesis p,,(r) after the treatment (1)-(2) with different 
thresholds Pcvit [in all figures the parameter of (2) is R = 10 ~] ;  
shaded is the region b(r) -> b ° which constitutes 50% of the cell 
volume: (a) pcvit=0.45; (b) pcrit=0-28; (c) per,=0"22; (d) 
Pcrit = 0"05. 
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2.3. 'Negative' image of the molecule 
When a finite-resolution synthesis is calculated, the 

effect of truncating the Fourier series is observed. It 
results in more flat peaks and negative values in the 
synthesis (even if the calculated structure-factor 
moduli and phases are absolutely accurate). 
Moreover, the deepest negative minima appear in the 
synthesis near the highest maxima. Correspondingly, 
the region of the molecule will contain not only the 
highest positive maxima but also the deepest negative 
minima. If the threshold Pcrit in (1) falls below the 
minimal value in the solvent, then all points in the 
solvent region will be basic. At the same time all the 
points which are not basic (deepest negative minima) 
will remain inside the molecule, thus giving the 
minimum of (2) within the boundary of the molecule. 

The above considerations are confirmed by the 
following test. As mentioned in § 2.1, we calculated 
the 'exact' synthesis pex(r) at a resolution of 4 A. The 
minimum and maximum values were -0.45 and 
2.42e A-3, respectively, and the mean value was 
Fooo/V=0.25 e A-3. The solid line in Fig. 3 shows 
the distribution of frequencies for different values 
which the electron density takes on in the synthesis 
pCx(r). Also in this figure the distribution of the 
frequencies is given separately for the molecule ind 
the solvent regions. The minimum, maximum and 
mean values for the molecule region were -0.45,  2.42 
and 0.29 and for the solvent -0.19, 0.33 and 0.06. 
The mean square deviation from the mean value in 
the solvent was O-~o~=0.065. The region of the 
molecule was defined in this calculation as the con- 
junction of the spheres of radii 5/~ for all the atoms 
in the molecule, with centres at the atomic centres. 
It occupied 81% of the volume of the unit cell. 

It is seen in Fig. 3 that the negative values with the 
largest moduli are actually concentrated within the 
molecule. 

v 

\ 

\ 
\ 
\' I I ~- O 

0-5 1-0 1 "5 

Fig. 3. Histograms for the values pex(r): in the whole unit cell 
( ); in the molecular region ( x - x - x ); in the solvent region 
(- - -). Here u(p)Ap is the portion of  the unit cell with the values 
of  p(r) within the interval (p, p + Ap). 

We did not simulate the solvent in the inter- 
molecular region during the test. Therefore, in bio- 
logical crystals the mean value of fiso~ in the solvent 
is somewhat higher than in the test. 

The property of the molecule to include the points 
of deepest minima may serve to define its boundaries: 
the points of extremely small values of p,(r) may also 
be used as basic. For example, we can use as the first 
transform the next one: 

i for p(r)-->pcmi] x 
pm(r) = for rnin max 

Pcrit < P ( r )  < flcrit (5 )  

f o r  p ( r ) - -  p cmiit. 

Values  fi, o~ + Oso~ + o.,, and  fiso~ - O',o~ - o'. m a y  serve 
the a p p r o x i m a t e  s t a n d a r d  t h resho lds  pc"~i'~ x and  mi. Pcrit , 
respectively. Here fi, o~ is the mean value, and O'~ol is 
the mean square deviation for the synthesis pex(r) in 
the solvent region. The estimate for the mean square 
value o-, of the 'noisy' component of the synthesis 
may be obtained in the following way (Blundell & 
Johnson, 1976): 

2 o-, = (1 /V 2) ~" F2(s)[1 - m2(s)], 
$ 

where re(s) is the figure of merit in the determination 
of the structure-factor phases. 

For the test in §2.1 o-,,=0-17, i.e. pcmi~tx=0"295, 
r n i n  

Pcrit -- - - 0 " 1 7 5 .  

3. Linear filtration 

The second step in bounding the molecule is the 
transform (2) or (4) of the modified function pro(r). 
These transforms can easily be written in a general 
form as 

b(r) = R~ 3 a( l r -ul)pm(u)  d V. = a * p, (6) 

where * means convolution. 
Here, for (2) 

a(t)={3/(4~R3) for t-- R 
0 for t > R (7) 

and for (4) 

a(t)={~/TrR4)(R-t) for t_< R 
for t >  R (8) 

[the coefficients are given by the normalization condi- 
tion ~g 3 a ( [ u l ) d V . = l  ]. Using the property of the 
Fourier transform to convert the convolution of func- 
tions into the product of their Fourier coefficients, 
we suggest the following way of calculating (2) 
(Urzhumtsev, 1985) and (4) (Leslie, 1987): one deter- 
mines structure factors F"(s )  exp[i~o"(s)] of the 
function p ' ( r )  and finds the function 

b(r)=(1/V) ~. z(s)F"(s)  exp [i~o"(s)], (9) 
s 
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in which the smoothing function r(s) is the sinus- 
Fourier transform of the convolution kernel in (6), 

r(s) = (2/s)  ~ ta(t) sin (2rrst) dt. 
0 

For functions of the forms (6) and (7) the correspond- 
ing smoothing functions r (s)  and rW(s) can easily 
be defined analytically. For (6) 

sin (2rrsR) - 2rrsR cos (rrsR) 
r(s) =3 

(2,n.sR)3 

and for (7) 

211-cos  (2~sR)] -21rsR sin (2~sR) 
rW(s )=  12 

(2rrsR) 4 

These functions are plotted in Fig. 4. 
We have used the transform (2) primarily to calcu- 

late the number of basic points inside a sphere with 
the centre moving over the unit cell. Equation (9) 
gives an opportunity to regard it as a common way 
of filtering the high-frequency noise. It implies the 
suppression of the high-frequency components by 
multiplying them by the function r(s) decaying with 
increasing s (Shevyrev & Simonov, 1981). It is reason- 
able to suggest that the noise in (9) may be filtered 
by other functions decreasing with increasing s. An 
example is (Namba & Stubbs, 1985) 

r°(s) =exp  [-(2rrse)2/6]. 

This expression corresponds to (6) with the Gaussian 

a(t)=(3/2rrR2) 3/2 exp[-(3/2R2)t 2] (10) 

(or, which is the same thing, to averaging with the 
Gaussian weight function). Fig. 5 shows the result of 
treatment (1) and (6) of the synthesis p,(r)  (Fig. lb) 
with functions a(t) of the forms (7), (8) and (10). 
Here we see no principal difference in using some 
modification or other of a(t). Nevertheless, the result 

\ 

~ ,  ° f -  , , L 

. ~ /  

Fig. 4. Smoothing functions in (9): (- - -) for the averaging (2); 
( ) for the weighted averaging (4). 

may be slightly better if we use the Gaussian a(t) of 
the form (9) so that the weight function z ° ( s )  is 
non-oscillating. 

4. Treatment of syntheses with extremely high noise 

The modification (3) of Wang (1985) is independent 
of the noise in the synthesis treated. On the one hand, 
this facilitates the work, making estimation of the 
parameters of the noise component unnecessary. On 
the other hand, a situation may arise when for a high 
level of noise a molecule cannot be bounded by 
(3)-(4), whereas use of (1)-(2) or (5)-(2) with a high 
level of pcr, (exceeding the value of noise) will solve 
this problem. This statement may be illustrated by 
the following test. The test object was the synthesis 

p,(r)=(1/V) Y" Fex(S)½(exp{i[qM(s)+~(s)]} 
SC S '  

+exp  i~0r(s)) exp [ -2 r r i ( s .  r)], (11) 

where Fex exp (i~e~) are structure factors calculated, 
as above, from the subtilisin model; 6 are random 
normally distributed values with zero means and 
mean square deviations of 30°; ~r are phases gener- 
ated by a randomizer; the set S' includes the same 
82% of reflections as before. This level of noise per- 
tains to a synthesis constructed from the incomplete 
set of reflections with 'best' phases determined with 
respect to a single heavy-atom derivative. The errors 
6 imitate the errors caused by inaccurate determina- 

\c~ ~ ) )20( :  

(a) (b) 

(c) 

Fig. 5. Boundaries obtained after the treatment (1) and (6) (Pint = 
0.40, R = 10 ~) with various weighting schemes in (6). The thick 
line represents the mask produced by the function b(r) which 
constitutes 60% of the cell volume. The thin line represents the 
exact synthesis pex(r) (it bounds 40% of the cell): (a) weight 
function (7); (b) weight function (8); (c) weight function (10). 



A. G. U R Z H U M T S E V ,  V. YU L U N I N  A N D  T. B. L U Z Y A N I N A  39 

tion of  heavy-a tom parameters .  Fig. 6 depicts the 
synthesis p , ( r )  before and after  the t reatments  (3)-(4)  
and (5)-(2) .  

The authors  thank O. M. Liginchenko for her help 
in prepar ing the manuscript .  

(a) (b) 

(c) 

Fig. 6. Section z = 12/48: (a) the synthesis (11); (b) the synthesis 
(11) after treatment (3)-(4) (R= 10/~,); (c) the synthesis (11) 

max _ min after treatment (5) and (2) (Pcrit --0"56, Petit =-0.047, R = 
10/~). Bounded is the region b(r)> b ° which constitutes 40% 
of the cell volume. 
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Abstract 

The anomalous  scattering tensor, measured using syn- 
chrotron radiat ion with lithium iodate near  the iodine 
K absorpt ion edge, shows polarization anisotropy 
similar to that  in the bromate  ion, but lesser in magni- 
tude: about  1 e lec t ron /a tom at most. The reduction 
is explained by a greater  natural  width of  the K level. 
Equally small or smaller  anisotropy is predicted for 
any other absorpt ion edge above 33 keV. 

I. Introduction 

X-ray dichroism occurs in some molecules near  
absorpt ion edges as a result of  transitions to electronic 
states which have symmetry  that  reflects the direc- 

0108-7673/89/010039-04503.00 

tional character  of  the chemical bonding.  The 
anomalous  scattering also depends  on the direction 
of  polarizat ion of  the radiat ion and needs to be rep- 
resented by a tensor rather  than a scalar  function. 
Having found  large effects of  this kind for the 
pyramidal  b romate  ion near  the K edge of  bromine  
(Templeton & Templeton,  1985a) we were eager to 
test them in the iodate ion, which has analogous  
electronic structure and the same pyramidal  shape.  
Lithium iodate,  which crystallizes with two molecules 
per cell in the non-centrosymmetr ic  space group P63 
(Rosenzweig & Morosin,  1966; de Boer, van Bolhuis, 
Ol thof -Hazekamp & Vos, 1966), is a suitable material  
for observation of  the dichroism because the threefold 
axes of  all the iodate ions are parallel. This molecular  
orientation and the lack of  a center of  inversion permit  
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